Remarks on a cyclotomic sequence

نویسنده

  • Wilfried Meidl
چکیده

We analyse a binary cyclotomic sequence constructed via generalized cyclotomic classes by Bai et al. (IEEE Trans Inforem Theory 51: 1849–1853, 2005). First we determine the linear complexity of a natural generalization of this binary sequence to arbitrary prime fields. Secondly we consider k-error linear complexity and autocorrelation of these sequences and point out certain drawbacks of this construction. The results show that the parameters for the sequence construction must be carefully chosen in view of the respective application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Generalized Sequence Space of Bounded Variation of Sequences of Fuzzy Numbers

The idea of difference sequences of real (or complex) numbers was introducedby Ki zmaz cite{Kizmaz}. In this paper, using the difference operator and alacunary sequence, we introduce and examine the class of sequence $bv_{theta}left(  Delta,mathcal{F}right)  .$ We study some of its properties likesolidity, symmetricity, etc.

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices

The coordination sequence of a lattice L encodes the word-length function with respect toM , a set that generates L as a monoid. We investigate the coordination sequence of the cyclotomic lattice L = Z[ζm], where ζm is a primitive m th root of unity and where M is the set of all m roots of unity. We prove several conjectures by Parker regarding the structure of the rational generating function ...

متن کامل

ON THE Lq NORM OF CYCLOTOMIC LITTLEWOOD POLYNOMIALS ON THE UNIT CIRCLE

Let Ln be the collection of all (Littlewood) polynomials of degree n with coefficients in {−1, 1}. In this paper we prove that if (P2ν) is a sequence of cyclotomic polynomials P2ν ∈ L2ν , then Mq(P2ν) > (2ν + 1) a for every q > 2 with some a = a(q) > 1/2 depending only on q, where

متن کامل

Lower bound on the 2-adic complexity of Ding-Helleseth generalized cyclotomic sequences of period $p^n$

Let p be an odd prime, n a positive integer and g a primitive root of pn. Suppose D (p) i = {g 2s + i|s = 0, 1, 2, · · · , (p−1)p n−1 2 }, i = 0, 1 is the generalized cyclotomic classes with Z∗ pn = D0 ∪D1. In this paper, we prove that Gauss periods based on D0 and D1 are both equal to 0 for n ≥ 2. As an application, we determine a lower bound on the 2-adic complexity of generalized cyclotomic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2009